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Abstract 

We describe a number of techniques for the analysis of solid-state nanopore ionic current 

traces and introduce a new package of Matlab analysis scripts with GUI frontends. We discuss 

methods for the detection of the local baseline and propose a new detection algorithm which 

bypasses some of the classical weaknesses of moving-average detection. Our new approach 

removes detected events and re-creates an ideal event-free baseline which is subsequently 

used to recalculate the local baseline. Iterative operation of this algorithm causes both the 

moving average of the baseline current and its standard deviation to converge to their correct 

values. We explain different approaches to selecting events and building event populations, 

and we show the value of keeping track of the changes in parameters such as the event rate 

and the pore resistance throughout the course of the experiment. Finally, we introduce a new 

technique for separating unfolded events and detecting current spikes present within 

translocation events. This open source software package is available online at: 

http://ceesdekkerlab.tudelft.nl/downloads/ 

 

Keywords: nanopore, software, analysis, algorithm   

 



3 

 

1. Introduction 

Over the past decade, there has been tremendous growth and progress in research on solid-

state nanopores[3, 15]. In this technique, a membrane containing a nanometer-scale pore is 

placed in-between two chambers containing an electrolyte solution, as shown in Figure 1a. An 

electric field is applied across the membrane and charged molecules, such as DNA, present in 

the solution experience an electrophoretic force which pulls them towards the pore and causes 

them to translocate through. As a molecule translocates through the nanopore, it temporarily 

blocks the current and this causes a temporary resistive pulse, as shown in Figure 1b. Typically, 

the duration of the pulse contains information about the length of the molecule while its 

amplitude is dependent on the molecule’s cross-sectional volume. 

 

With the steep development of this field has come the need for signal-processing tools 

specifically suited to this niche. While many different techniques exist for analysis of nanopore 

current traces, the majority of data analysis is done on custom software which differs from lab 

to lab, although some approaches have recently been published[1, 6, 10]. Arjmandi et al[1] 

have discussed the advantages of wavelets over low-pass filtering, particularly in the accurate 

recovery of the dwell time and amplitude of translocation events. Raillon et al[10] have 

proposed a new level-fitting algorithm based on the cumulative-sums algorithm. Pedone et 

al[6] focused on the accurate analysis of short pulses, which is a common issue in experiments 

aimed at detecting proteins and short DNA.  

 

In this paper, we describe the many aspects of nanopore data analysis as combined in one 

single comprehensive new Matlab GUI-based package named Transalyzer. We also introduce 

novel approaches for detecting the local baseline, extracting current peaks present within 

events, and we describe various analysis strategies for specific scenarios. Our analysis 

procedure is split into three successive stages, with each stage utilizing parameters determined 

in the previous stage, as shown in Figure 1c. The first stage (GUI_detect) determines the local 

baseline, rms noise level (σ), it detects each translocation event, and determines its basic 
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properties such as duration, current blockade level, and integrated area [event charge deficit 

(ECD)]. In the second stage (GUI_events), mixed event populations are sorted and population 

level statistics are generated, such as the most probable dwell time, blockade level, and event 

rate. The third and final stage (GUI_localstructures) reanalyzes each event in a given 

population for the presence of local structures such as bound protein or knots. This analysis 

pipeline allows us to address the large variability encountered in different types of 

experiments. 

 

2. Event detection and characterization 

The analysis procedure begins with the detection of translocation events within a noisy 

baseline. As most other labs, we use a thresholding algorithm to extract events. In this 

approach, events are identified if they cross a threshold (typically 5σ) away from the local 

baseline level. The threshold is defined by multiplying a peak detection factor and the rms 

noise level (σ), as shown in Figure 2. The peak detection factor is chosen large enough to 

minimize the number of noise spikes captured, while simultaneously low enough to capture as 

many translocation events as possible. Successful detection of translocation events requires 

proper identification of the local value of the baseline and the noise level (σ). A variety of 

factors complicate the determination of these two values, including: (1) inherently unstable 

baselines, (2) very large event rates, (3) pore clogging, and (4) successive closely-spaced 

events. Here, we describe how we have addressed some of these issues in our analysis 

software, which has been used to analyze a large variety of experimental data. 

 

2.1 Baseline detection 

Traditionally, baseline detection is performed by calculating a moving average, with the 

window size optimized to the maximum period of time over which the baseline value is allowed 

to fluctuate by some chosen amount. Issues affecting proper baseline detection can be 

distinguished based on the baseline’s stability. In the case of a stable baseline, the size of the 

window can be kept quite large (say, 30k points at 500k samples/s) and this can provide an 
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accurate value in most cases. In cases where the baseline is unstable, however, the window 

size must be kept small (<6k points) in order to track the baseline fluctuations. In both of these 

cases, particularly the latter, the moving average can become an inaccurate representation of 

the local baseline due to the fact that previous events influence the value of the local 

baseline. This effect is especially noticeable if the event rate is very high, leading to many 

closely spaced events, or if the event durations are a significant fraction of the window size. 

We introduce a simple algorithm to deal with all these issues in Section 2.3. 

 

2.2 Noise level determination 

A number of techniques exist for determining the noise level. In the case of a stable baseline, 

with short-duration events at a low event rate, the trace file can be split into small segments 

and the global standard deviation can be used. A more accurate method, which works well with 

high-event-rate data sets, is to first determine the standard deviation in a small moving 

window (typically 1000 points in size). The values of the standard deviation for all of the 

windows in a trace segment can be put into a histogram where the bin width is defined by the 

precision required. The center of the main peak in the resulting histogram typically provides an 

accurate value of the standard deviation within the trace.  

 

2.3 Iterative detection algorithm 

In order to overcome the limitations of the thresholding approach, we designed and 

implemented a new algorithm shown in Figure 3a. This approach involves iterating through the 

thresholding algorithm multiples times in order to decouple the moving average calculation of 

the local baseline from the influence of previous events. At the end of each iteration a new 

current trace is generated where the duration of each detected event is replaced by the value 

of the local baseline at the start of the event. An assumption is thus made that the baseline 

value does not change significantly (>σ) over an average event’s translocation time, which 

holds true in the majority of the experimental data we have encountered. This new trace is 

subsequently used to recalculate the moving average (using the same approach described in 
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section 2.1), the rms noise level, and detect the events again. In Figure 3b we show a 

comparison of the value of the local baseline for a 20k moving average, a 5k moving average, 

and a 5k moving average with 2 iterations of the algorithm. In this simulation, three events are 

placed close together. Using the small 5k-point moving average results in a very inaccurate 

value of the local baseline for the second and third events. Increasing the window size to 20k 

points improves the accuracy but fails to completely eliminate this effect. The proposed 

algorithm quickly converges to the correct value with each iteration, while allowing small 

window sizes to be used, as shown by the 5k-point 2-iteration trace. Similarly for the 

calculation of the standard deviation, a second trace is created after each iteration were the 

events are removed and this is subsequently used to determine the new value of the standard 

deviation. The iterative algorithm is capable of handling event rates where the average time 

between events is twice as small as the size of the moving window used. So a 5k point window, 

corresponding to 10 ms at 500k Samples/s, can be used on data with event rates of 200 Hz, as 

long as the average translocation time of the events is several times smaller than the size of 

the moving window. Much higher event rates must be addressed on a case-by-case basis, 

although these situations are typically avoided because they can lead to multiple molecules 

within the pore simultaneously, which can significantly complicate analysis. In the future 

several alternative implementations of the iterative algorithm could be used to handle more 

unstable baselines, at the cost of increased computational time. This could include using both 

the forward and backward moving averages to determine starting and ending points for the 

event, and interpolating the change in the baseline that occurred over the course of the event.  

 

How does the iterative algorithm perform when analyzing experimental data? We can quantify 

the improvement in the value determined for the local baseline by introducing a new measure 

<IIB>. This is calculated by first finding the mean value of the fifty points preceding the start of 

this event and subsequently determining the difference between this mean and the value of 

the local baseline (from the moving average) for each particular event. We take the absolute 

value of this difference and determine the mean (<IIB>) and standard deviation (STD) of the 
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resulting distribution. If the value of the baseline improves, we expect the value of <IIB> to 

reduce and the spread of its distribution to become more narrow. We applied this approach to 

several DNA and protein experimental datasets and reanalyzed each dataset using 0, 1, or 2 

iterations of the algorithm, with the results shown in Table 1. We observed reductions in <IIB> 

and STD after one iteration in all cases, with further iterations bringing minimal improvements. 

The larger improvements observed in DNA experiments, can be attributed to the longer 

duration of these events compared to proteins, which leads to larger changes in the moving 

average. Although the changes may appear small, these values are averaged over thousands of 

events. This simple algorithm can thus improve the analysis results and overcome the issues 

associated with thresholding detection. 

 

2.4 Event characterization 

Proper determination of each event’s characteristics (duration, blockade, and ECD) can be 

complicated by many types of physical phenomena and data-handling effects, depending on the 

type of experiment, including: short events prone to filtering distortions[6], low SNR, long tail 

events, folding[8, 14], events were the current increases rather than decreases during 

translocation[13], hybrid events were the current both decreases and increases[5], events 

where the molecule docks onto the pore before translocating[2, 7, 12, 16], knotting[11], mixed 

populations, pore growth over time[4], biomolecule-pore interactions[9], protein-DNA 

interactions, and the presence of short DNA fragments. For the event duration, using the full-

width-half-maximum value (in conjunction with a Gaussian low-pass filter), provides the most 

accurate translocation time value, even in the light of various distortions introduced by 

filtering[1, 6]. The blockade level for very short duration events (short DNA or proteins) is best 

represented by the maximum blockade value. For longer events, dividing the ECD by the FWHM 

time provides the best representation of the blockade level for many different types of events. 

For blockades with well-defined levels such as large folds[8], level-fitting software such as 

OpenNanopore[10] can be used. We have added an export function into Transalyzer capable of 

exporting event databases into OpenNanopore, effectively acting as an event pre-processor. 
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Our software allows the user to select between multiple analysis techniques to determine the 

translocation time and blockade level of each population, since multiple populations can 

coexist within the same experiment.  

 

Due to the many different types of event blockades possible, we allow the user to select 

between three different types: current increase, current decrease, and hybrid (decrease and 

increase). This feature can also be used in situations where there is a very low SNR by 

exploiting the fact that noise is symmetric around the baseline while translocation events 

(typically) are not. In our approach, the same dataset is analyzed twice, once assuming current 

increase and again using current decrease. Differences in the properties of the resulting 

populations, such as the event rate, provide strong evidence that translocation events are 

present, even when it is difficult to differentiate individual events from noise. 

 

3. Population sorting and characterization 

Events can be sorted using a number of different criteria into different populations. Our 

software allows the user to set a minimum and maximum translocation time, current blockade, 

local baseline level, event number, and event charge deficit in order to select out an event 

population. In most situations, the event charge deficit (ECD) has a Gaussian distribution for a 

population of molecules with homogeneous length. A non-Gaussian or distorted ECD distribution 

can be caused by significant molecule fragmentation, strong biomolecule-pore interactions, 

low SNR, the presence of docking levels, or overlapping populations. Importantly, selecting a 

population using the ECD allows folded events to be included in the selection. If folding is not 

possible, due to the nature of the analyte (nanoparticle, globular protein, etc..) or because the 

size of the pore is too small, selection using the translocation time can also be useful. Unfolded 

events (i.e. events with no extra peaks present) can be selected by looking at the maximum 

amplitude distribution, where similar to current histograms, events contribute to Gaussian 

peaks depending on the folding, with the first peak corresponding to unfolded events. Selection 

on event number can be used in time-dependent processes where conditions change during the 
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experiment. Finally, selecting using each event’s local baseline allows the quick removal of 

clogs as well as, if preferred, translocation events which occurred while the pore was partially 

blocked. Once an event population is selected, it can be characterized using well-established 

properties such as the most probable translocation time, the most probable blockade 

amplitude, the most probable ECD, and the event rate. 

 

Keeping track of how properties change over time during an experiment can be quite useful in 

many instances. Fluctuations in the event rate as a function of time can indicate the presence 

of a number of processes: Sudden changes in the event rate can indicate the presence of a clog 

or partial pore blockage. A slow decrease in the event rate over time suggests possible 

adsorption of the analyte to the pore membrane or flowcell walls, as can, for example, occur 

with DNA sticking to SiN in the presence of divalent cations. A gradual increase in the event 

rate at the start of the experiment which subsequently reaches a plateau level is indicative of 

poor mixing conditions in the flowcell, an effect noticeable with high-viscosity buffers. 

Tracking of the absolute value of the baseline as a function of time can be used to quantify 

effects such as pore growth. Indeed, for long-duration experiments where the baseline value is 

observed to change significantly over the course of the experiment, the amplitude of the 

events should be normalized by the value of the local baseline in order to be comparable to 

each other. This issue is particularly relevant in measurements on small diameter pores. These 

issues highlight the benefit of tracking how global properties change over the course of an 

experiment. 

 

4. Local structures detection 

Finally, we briefly describe how the presence of small current spikes within a translocation 

event can be detected. Such analysis can, for example, be useful for experiments involving 

DNA-bound proteins or DNA knots. We begin by separating events containing large folds from 

unfolded events that contain local spikes. This is accomplished by looking at the area occupied 

by the current trace in between the first two DNA blockade levels (I1 and I2). The first blockade 
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level (I1) is the most probable blockade level with only a single (double-stranded) DNA molecule 

inside the pore, while the second blockade level (I2) is the most probable blockade level when 

two DNA molecules are in the nanopore simultaneously. These two levels can be determined 

from their respective peaks in a current histogram. Figure 4ab provides two example events, 

one unfolded and one with a large fold at the start. The area occupied by the current trace 

(between I1 and I2) is shown in red in Figure 4cd, while the product (I1tFWHM) of the DNA 

blockade level (I1) and the FWHM translocation time of the event (tFWHM) is represented by a 

green rectangle. The area occupied by the current (red) is normalized using this value (green) 

to produce the normalized charge deficit between I1 and I2 (NCD1-2). Events with large folds 

have a large value of NCD1-2 while unfolded events with spikes have smaller values. For 

example, the event in Figure 4a has NCD1-2 = 0.125 while the folded example of Figure 4b has 

NCD1-2 = 0.350. Circular molecules produce NCD1-2 values close to 1. Figure 4e shows a typical 

distribution of NCD1-2 values for an experiment of DNA with bound proteins that translocate 

through a 20 nm pore. In order to determine a cutoff between folded and unfolded events, we 

look at known folding rates from DNA-only experiments. For example, in 1M KCl at 30 kHz 

bandwidth in a 20 nm pore (i.e. the same conditions of the experiment of Fig. 4e), lambda-

phage DNA is observed to have approximately 36% of events unfolded. Figure 4f shows the 

normalized cumulative sum of the NCD1-2 distribution. A horizontal blue line has been added at 

a value of 0.36; a vertical blue line defined by the point of intersection (in this case at NCD1-2 = 

0.22) between the curve and 0.36 provides the cutoff value used to define events as unfolded 

or folded. Once a dataset is generated with only unfolded events, we then detect peaks 

present within the DNA event. Essentially our analysis comes down to detecting events within 

events. For each peak detected we record the temporal position, the position normalized with 

the total event duration, the peak FWHM, and the peak amplitude. This simple approach allows 

for the quick separation of folded and unfolded events and the subsequent detection of any 

local structures present. 

 

4. Discussion and conclusions 
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We have described a number of analysis techniques implemented in our analysis software and 

provided a number of examples for specific scenarios. Unlike previous works, we have 

addressed various effects which occur throughout the analysis procedure. The iterative 

detection algorithm that we have described provides a simple way to overcome issues typically 

encountered when using the thresholding detection approach. Furthermore, we have outlined a 

new method for separating folded events from unfolded events containing current spikes, 

which is particularly useful in the detection of local structures.  

 

Our Transalyzer analysis package has been licensed under the New BSD Licence, which 

encourages further development and modification by other labs by imposing minimal 

restrictions on its modification and redistribution. It is freely available for download from our 

lab website (http://ceesdekkerlab.tudelft.nl/downloads/). A Subversion repository has also 

been created on Google Code (http://code.google.com/p/transalyzer/) to encourage future 

improvements, additions, and code modifications by other labs. 
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Figures  

 

Figure 1. a) Illustration of a typical nanopore setup. b) Current signal produced by a 

translocating DNA molecule. c) Schematic of the typical analysis procedure of a nanopore 

current trace, which is divided into three parts. The first part splits a current file, detects the 

events in each segment, characterizes each event, and concatenates all found events. The 

second part sorts and characterizes the event populations. The final part can be used to sort 

and re-analyze events for the presence of local structures and to generate relevant statistics. 
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Figure 2. A typical threshold detection scheme involves finding the local baseline and rms 

noise level (σ). A detection threshold is set as a constant (PDF; peak detection factor) 

multiplied by the rms noise level, away from the local baseline. Events are detected by finding 

points where the current trace crosses the detection level. The trace can be analyzed 

backward from the first crossing point and forward from the next crossing point to find the 

points where the current crosses the local baseline, which define the start and stop of the 

event. 
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Figure 3. a) Flowchart of the iterative detection algorithm. After each iteration, information 

about the events found feeds back into the next iteration to improve the value of the local 

baseline and rms noise level. b) A simulation of three closely spaced translocation events, with 

the local baseline determined using three different techniques. Moving averages of 20k and 5k 

points, represented by the dashed green and red lines, fail to properly determine the local 

baseline of the 2nd and 3rd events because the moving average is influenced by the previous 

events. The solid magenta line shows the same 5k-point moving average after 2 iterations of 
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the detection algorithm, demonstrating that it is able to accurately determine the value of the 

local baseline despite using a small window size.   
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Figure 4. Detection of local peaks within events. a) Current trace of an unfolded event with a 

single spike. b) Current trace with a folded event. The horizontal green lines represent 

multiples of the single dsDNA blockade level (I1) as determined using a current histogram. c-d) 

The same events as in a-b with the area in between the first two blockade levels highlighted. 

The integral (charge deficit) of the current trace between these two levels is shown shaded in 
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red. This charge deficit is normalized by the total area given by the product (I1tFWHM) of the 

DNA blockade level I1 and the FWHM translocation time tFWHM of the event, shown as a green 

rectangle. The resulting value is termed the normalized charge deficit between I1 and I2 (NCD1-

2). Events with folds have higher NCD1-2 values. e) Typical distribution of NCD1-2 values for a 

protein-DNA experiment where DNA events contain short spikes, along with the positions of the 

two example events of panel a and b. f) Normalized cumulative histogram for the distribution 

shown in e. The vertical line shows the proportion of events which are typically unfolded in 

these conditions as determined using DNA-only control experiments. The vertical line is the 

intercept of the normalized cumulative sum with this, and is used to determine the maximum 

NCD1-2 value allowed for an event to be considered unfolded.  
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Table 1 – In order to quantify the improvement in the calculation of the baseline we determine 

IIB, which is the absolute value of the difference between the mean of the fifty points 

preceding the start of the event and its local baseline value. The mean (<IIB>) and standard 

deviation of IIB values in each dataset is shown. All experiments were carried out in 1M KCl, 

filtered at 10 kHz, and analyzed with a 5k point moving average. Improvements in the value 

determined for the baseline results in lower values of <IIB> and its STD. In all cases we see an 

improvement after one iteration, with further iterations bringing only minimal improvements. 

Dataset 
Num. 

of 
Events 

Event 
rate 
(Hz) 

Num. 
of 

Iter. 

<IIB> 
(pA) 

STD 
(pA) 

A 
λ DNA, 20 nm 
pore, 100 mV 

1975 4.8 

0 6.3 6.2 

1 5.5 4.7 

2 5.4 4.4 

3 5.4 4.4 

B 
λ DNA, 10 nm 
pore, 500 mV 

1477 10.0 

0 23.4 23.7 

1 20.9 20.1 

2 20.9 20.1 

C 
T4 DNA, 20 nm 
pore, 100 mV 

1287 0.3 

0 4.7 4.1 

1 4.6 3.7 

2 4.6 3.7 

D 
IgG antibody, 
20 nm pore, 

100 mV 
10221 162.2 

0 6.6 6.7 

1 6.0 6.0 

2 5.9 6.0 

E 
99kDa protein, 
16 nm pore, 

100 mV 
6009 35.8 

0 7.0 6.2 

1 6.9 6.1 

2 6.9 6.1 
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